About Me

My photo
Early childhood education has been my life for over 40 years. I have taught all age groups from infants to 5-year-olds. I was a director for five years in the 1980s, but I returned to the classroom 22 years ago. My passion is watching the ways children explore and discover their world. In the classroom, everything starts with the reciprocal relationships between adults and children and between the children themselves. With that in mind, I plan and set up activities. But that is just the beginning. What actually happens is a flow that includes my efforts to invite, respond and support children's interface with those activities and with others in the room. Oh yeh, and along the way, the children change the activities to suit their own inventiveness and creativity. Now the processes become reciprocal with the children doing the inviting, responding and supporting. Young children are the best learners and teachers. I am truly fortunate to be a part of their journey.

Saturday, August 31, 2019

The science of sloshing and the moon landing

I am always looking for real-life analogues for children's scientific inquiry at the sensory table.  In looking over my documentation lately, I found a video of a child walking with a pretty full tub of water around the sensory table.  As he walked around the table, the water sloshed from side-to-side in his tub so he was forced to change his gate to minimize the spillage


Water sloshing from Thomas Bedard on Vimeo.
  


So what does sloshing have to do with the moon landing?  As it turns out, quite a bit.  In 1969, Neil Armstrong set the lunar lander on the moon.  In the course of landing on the moon, he was forced to maneuver the lunar lander with the propellant sloshing around.  Because the propellant was dwindling, the sloshing was more pronounced and that made it more difficult to keep the lunar module steady.  We all know he landed on the moon.  However, because of all the sloshing, the space agency installed extra anti-sloshing baffles on subsequent missions.  Anti-sloshing baffles; I never knew such things existed.


The amount of sloshing was unexpected.   I would venture to guess that Neil Armstrong was able to handle the sloshing because as a child, he carried or transported water in containers that allowed for plenty of sloshing.  In other words, he had an embodied knowledge of the physics of sloshing.


I contend that the child carrying the sloshing water was building that very same knowledge.  I do not begin to presume to know how the child will use that knowledge.  However, can you imagine how the parent would feel about what the child is learning when I make the analogy of his operations to those of Neil Armstrong.  Instead of just seeing the child spilling water on the floor, the parent would appreciate how the child is learning about the physics of sloshing.

Thursday, August 29, 2019

The extraordinary in the ordinary

There are some things that happen in an early childhood classroom that are quite extraordinary but at the same quite ordinary.    Does the one preclude the other?

In the videos below, a child used loose parts from around the sensory table to build his own construction.  It was not an expansive structure, nor was it an aesthetic marvel.  It was ordinary in every sense of the word. In fact, he only used a few ordinary elements.  Not only were the structure and elements ordinary, but so were the operations he employed in building the structure.

Next to the sensory table, there was an assortment of what I call Hodgepodge and Doohickies. Children chose from this variety loose parts for their play at the sensory table.

On this particular day, many of the implements had already been transported to the sensory table. However, one child found four things he could use to create a little building project on the floor next to the table. For more insight into this child's actions, I solicited the parent's reaction to the videos. Her reactions are in bold italics after each clip.

In the first video, the child took a clear plastic tube and dropped it inside a larger cardboard tube. With great facility, he put the tube combination into a measuring cup.  He seemed to have an ultimate plan: standing the tubes upright in the measuring cup.  His actions were extremely measured (no pun intended) because he seemed to realize the structure was not stable. With a leap of faith, he placed another measuring cup onto the structure and let go.  To his consternation, the structured toppled over.


engineering 1 from Thomas Bedard on Vimeo.


Mom's reaction: In the first video I noticed his uncertainty (which was really obvious when compared to video 2). I could tell the wheels were turning the whole time and I must say was impressed that he knew he had to hold the tubes at the bottom in order to keep the clear one in the cardboard one without trial and error.

Even though he did not succeed, he carried out his actions and intentions with great care and a budding aptitude for building/engineering.  He found out that balancing different objects in each other or on top of each other was not as easy as he had hoped.

After being unsuccessful and little frustrated at trying to get the tube to stand up in the measuring cup, he decided to insert the cardboard tube into an empty red coffee can.  Almost immediately, he uttered a positive and confident "Huh" that indicated he had realized his plan.  After dropping a couple of sticks inside the tube, he placed another measuring cup on top of the tube with a lot more confidence that the structure would not fall over.  He turned to the camera and gave another "Huh" and proudly declared: "It stays."


engineering 2 from Thomas Bedard on Vimeo.


Mom's reaction: In the second video, I noticed how much more sure of himself and his method he was. He said "Huh" right away in the beginning because he anticipated success with the smaller coffee can. He had no apprehension on his face the whole video and used "huh" again at the end (when he was actually successfully) as a kind of completion and "I've bested you" to the now standing tube. His smile at the end was priceless and showed how pleased he was with himself and his accomplishment.

Like all good builders/engineers, the time came to test his structure.  He exuded a high degree of confidence with his body language as he tested putting a couple of other loose elements on top of his structure.  It was not hard to see that he was smiling with his whole body.


engineering 3 from Thomas Bedard on Vimeo.


Mom's reaction: In the third video, I thought it was so cute how he could barely contain his excitement and couldn't sit still (It almost looked like he had to go to the bathroom!). He was willing to tempt fate by placing another container on top but wasn't too sure it wouldn't wreck his masterpiece so he ended up taking it off. He seemed a lot more relaxed after he took it off to know the tube would remain standing.

The videos really show his mechanical aptitude, which runs in the family. My husband is a 3rd generation elevator mechanic.

The parent watched the videos with her son.  This was what she said about his reaction to the videos:

He had a big smile on his face the whole time we were watching the videos and was so proud that a video of just him was commanding all of our attention. At one point he asked me, "Why did I go "ha, ha"?", I said I didn't know and asked him why he did it and he said "Because I liked it" which I interpreted as him being proud of himself.

The following week, the child was back in the sensory table area for more building.  He kept experimenting making several new balancing structures with the various ordinary loose parts..

The videos and the photo showed a child who, given the time, space and materials, used his agency to understand a little piece of his world.  And he did it while working with the most mundane elements: a plastic tube, a cardboard tube, two measuring cups, an empty coffee can, and a metal pail.  That was the extraordinary in the ordinary. 

Monday, August 26, 2019

Australia bound

Next week I, will travel to Australia through Real World Learning, a group that specializes in STEM professional development.  I will be doing a number of sessions around Australia emphasizing STEM at the sensory table.  For me, the sand and water table has always been a science table in which the children created their own experiments as they played and explored the various apparatus and materials.  They were masters of scientific inquiry and often taught me something new about the apparatus and/or the materials.

There will be a couple of sessions in Australia, however, that will be relatively new for me.  I will be holding a few sessions on children's STEM explorations around invitations that allow for loud/boisterous/adventurous play in other parts of an early childhood classroom.  Let me give you a couple of examples.

For the Science in STEM, two children pursued a spontaneous line of scientific inquiry of their own choosing.  They appropriated scarves from the housekeeping area to see what would happen when they put them over the room's blower.  To reach the blower, they climbed a set of steps and balanced on the top step as they directed their scarves over the blower.


Blower fun 2 from Thomas Bedard on Vimeo.


In fact, they each did their own experiment.  The child with the yellow/green scarf pressed his scarf over the blower while the child with the orange scarf launched his over the blower.  In one way the results were the same: squeals of delight.

For the Technology in STEM, a child draped a large scarf over the slide.  The scarf reduced the friction while sliding down, so she could go barreling down the slide to crash into the mat at the bottom.


Superslide from Thomas Bedard on Vimeo.


The scarf could be considered a form of technology because it was basically an instrument used to increase the child's speed down the slide.

For the Engineering in STEM, a group of children attempted to build a fort with a bunch of loose mats that were in the room.  
Were they able to build their fort?  Not quite, but they had a great time developing their nascent engineering skills.

For the Math in STEM, two children used loose mats to cover the top holes of the cubes.  They invented their own game of sinking into the cube.  To sink, they slowly shifted their weight into the middle until they and the mats dropped into the hole.


Sinking from Thomas Bedard on Vimeo.


There was certainly a lot of physics in this episode, but there was also a lot of math.  Math is not just numbers, but also all the positions that define the space---in/out, up/down, over/under and around/through---that both of the children experienced concretely.

STEM may sound intimidating, but when one steps back to observe, it is everywhere in the early childhood classroom.  Children do not "do" science.  Children "live" science.

If you are in Australia and curious about any of the sessions, please check out the events section of Real World Learning.
 










Sunday, August 4, 2019

Horizontal tube with holes

In 2013 I built an apparatus that I called: horizontal tube with holes.  I placed a long cardboard tube lengthwise across two sensory tables.  I supported it above the tables with two brown planter trays.  For stability, I taped the tube to the the two edges of one of the brown trays and to the lip of the clear table.
I cut and drilled multiple holes in the tube.  Those holes provided multiple points of entry for the children's operations.

This may look fairly simple, but it turned out to be a multidimensional space.  It had length: the cardboard tube spanned the two tables.  It had width: the width of the table perfectly holding the planter trays.  And it had vertical depth with three levels of play: the table, the trays and the tube, all on different levels.

There was actually a fourth level of play, namely the floor.  The level of the floor is represented by the bottom of the tub next to the table.  The following video shows how one child incorporated the bottom of the tub---a.k.a. the floor---in her operations.


Covering the bottom of the tub from Thomas Bedard on Vimeo.

She used her pail to methodically distribute the pellets to cover the bottom of the tub.  Was she cooking, gardening, ... ?

In addition to vertical depth, this apparatus provided horizontal depth, too.  The child pictured below explored that horizontal depth as he reached well into the tube to scoop out pellets.

Of course, depth also had another meaning with this apparatus.  Whether the children filled pails, the tube or the trays, the depth they experienced was volume.


The fact that this apparatus was multidimensional encouraged all kinds of operations in and around the tables.  I especially appreciated those operations that involved a certain amount of vigor.  In the video below, the child used both hands to propel the pellets out of the tube into the tub next to the table.


Horizontal blast of pellets from Thomas Bedard on Vimeo.

The child basically shot the pellets out of the tube by pushing them to the end of the tube with her right hand and thrusting them out toward the tub with her left hand.  So what if not all the pellets landed in the tub.  She created her own experiment with force and trajectory

Children are masters at exploring all the dimensions of any given apparatus.  They do it spontaneously; they do it methodically.   Sometimes they even do it with zest, and for me, that is always a bonus.